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Abstract. Quantum mechanics in the vicinity of black holes is a fascinating field of theoretical physics. It
involves both general relativity and particle physics, opening new eras to establish the principles of unified
theories. In this article, we show that quantum bound states with no classical equivalent – as can easily
be seen at the dominant monopolar order – should be formed around black holes for massive scalar par-
ticles. We qualitatively investigate some important physical consequences, in particular for the Hawking
evaporation mechanism and the associated greybody factors.

PACS. 04.62.+v; 04.70.Dy; 04.70-s

1 Introduction

Black holes are extreme objects whose study is very rich
and relies on different branches of physics. Among the
most important and fundamental phenomena of black
hole physics are the Hawking evaporation mechanism –
see [1] for a review – and the existence of quasi-normal
modes (QNMs) – see [2] for a review. On the one hand,
the evaporation phenomenon reveals the profound links
between gravity and thermodynamics. Its study is both
extremely fruitful in itself and because of the quantum
gravitational effects expected to occur during the last
stages of the evaporation, when the semi-classical ap-
proach breaks down. On the other hand, quasi-normal
modes are of particular importance because they revealed
black holes to be stable under perturbations and represent
a key ingredient in the computation of gravitational wave
signals.
This article focuses on the investigation of bound states

for massive particles emitted by black holes. The prob-
lem is mathematically quite close to the investigation of
massive QNMs [3], as in both cases the point is to find
the characteristic complex frequencies allowing a massive
(scalar) field to propagate in a black hole background,
while satisfying given boundary conditions at the black
hole horizon and at spatial infinity (see, e.g., [4]). Neverthe-
less because those boundary conditions are not the same,
the physical meaning of bound states and quasi-normal
modes are very different and correspond to different en-
ergy ranges. Although bound states are well known to exist
in quite a lot of classical and quantum systems, this work
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points out their specific existence around black holes, even
at the monopolar order, and investigates some important
consequences. In most of the literature, bound states re-
fer both to particles orbiting the black hole or back scat-
tered to the black hole. In this work, we are interested
in quanta trapped between the finite black hole potential
barrier and the infinitely thick well which prevents the par-
ticles from reaching infinity if their energy is low enough.
As will be demonstrated hereafter, those orbiting states
are not strictly stable but can be characterized by finite
lifetimes.
In Sect. 2, we first determine the conditions for such

states to exist and compute their energy spectra and life-
times at the WKB order. Thanks to a simple toy model, we
can estimate in Sect. 3 the average number of trapped par-
ticles as a function of their characteristic energies. Those
trapped massive particles – whose greybody factors must
be computed numerically – will also inevitably modify the
Hawking radiation spectrum at infinity, which is computed
in this section. Some conclusions are finally given together
with perspectives.

2 Orbiting bound states

The investigation of orbiting quantum bound states around
Schwarzschild black holes requires one to solve relativis-
tic quantummechanical equations in a curved background,
while taking into account a non-vanishing mass. To show
that those states do exist, the Klein–Gordon equation in
a Schwarzschild background will be shown to exhibit a ra-
dial potential containing a local well for given ranges of
black hole horizon radii and particle masses.



642 J. Grain, A. Barrau: Quantum bound states around black holes

2.1 Conditions for such states

The Klein–Gordon equation of motion for a scalar field Φ
with mass µ in a space-time with metric gαβ can be ex-
pressed as

1
√
−g
∂α
(√
−ggαβ∂βΦ

)
+µ2Φ= 0 . (1)

Writing Φ= e−iωtY �m(θ, ϕ)R(r) to split the temporal, an-
gular and radial parts of the field (where Y �m are the spher-
ical harmonics), the radial function R(r) obeys, in a 4-
dimensional Schwarzschild background,
[
h(r)

r2
d

dr
h(r)r2

d

dr
+ω2−h(r)

(
�(�+1)

r2
+µ2
)]
R(r) = 0 ,

(2)

where h(r) is defined by the metric ds2 = h(r)dt2−
dr2/h(r)− r2 dΩ2 (see, e.g., [5] and references therein for
a description of the general techniques associated with
quantum fields in a Schwarzschild spacetime used through-
out this paper). Under the change of variables r→ r∗ and
R(r)→ U(r) where r∗ is the tortoise coordinate (such
that dr∗ = dr/h(r)) and U(r) = rR(r), this equation takes
a Schrödinger-like form

d2U

dr2�
+
(
ω2−V 2� (r)

)
U = 0 , (3)

with a potential

V 2� (r) =
(
1−
rH

r

)(�(�+1)
r2

+
rH

r3
+µ2
)
, (4)

where rH stands for the Schwarzschild radius and � for
the angular quantum number. The usual quantum me-
chanical techniques can therefore be employed in the tor-
toise coordinate system. The Chandrasekhar convention is

Fig. 1. Square of the potential as a function of the radial co-
ordinate for three values of the mass µ and two values of the
angular quantum number � (in each case, � = 0 for the lower
curve and �= 1 for the upper curve)

used hereafter: the last term of (3) is interpreted as the
squared potential so as to recover the standard Hamilton–
Jacobi equation. On Fig. 1, V 2� (r) is shown for three dif-
ferent values of the mass (µ =

{
0,
√
0.1,
√
0.4
} [
r−1H
]
) and

two values of the angular momentum (�= 0 and �= 1). De-
pending on µ and �, it can be seen that a local minimum,
potentially leading to a bound state, eventually appears.
The existence of a potential well depends on the roots of

the algebraic equation
dV 2�
dr = 0:

rHµ
2r3−2�(�+1)r2−3rH(1− �(�+1))r+4r

2
H = 0 .

(5)

Two roots above rH exist if the mass µ is lower than a crit-
ical value µ+(�) given by

µ2+ =
1

216r2H

(
−27J1+

√
729J21 +432J2

)
, (6)

with

J1 = �
3(�+1)3+ �2(�+1)2− �(�+1)−1 , (7)

J2 = �
2(�+1)2

[
9+14�(�+1)+9�2(�+1)2

]
. (8)

In the monopolar case (i.e. �= 0), it takes the simple value
µ+ =

1
2r
−1
H . This allows one to easily understand the gen-

eral behavior of the potential. Let us consider a particle
with a givenmass µ1 and a black hole with a horizon radius
r1. The mass of the particle may be smaller than 1/2r1.
In this case, the local barrier and the potential well do
exist for all the values of the orbital quantum number, and
particles can be potentially trapped with any angular mo-
mentum. On the other hand, if µ1 is greater than 1/2r1,
then the �-domain has to be divided into two subclasses.
A critical value of the orbital quantum number, denoted
�1, can then be defined by µ+(�1)< µ< µ+(�1+1). For all
the partial waves with an orbital quantum number smaller
or equal to this critical value, the potential appears as
a monotonically increasing function of r from V�(r1) = 0 to
V�(+∞) = µ1. However, all the partial waves with � > �1
will face the local barrier as well as the well potential.
The detailed shape of the potential is also determined

by another critical mass, hereafter called µ−(�), which de-
fines the relative height of the potential barrier close to the
horizonwhen compared with the mass of the particle. If the
mass of the particle is higher than the barrier, there is no
more a turning point for the system. The mass is the high-
est value of the potential if the equation V 2� (r) = µ

2 has no
root above rH . The cubic form

r3−
�(�+1)

rHµ2
r2−

1− �(�+1)

µ2
r+
rH

µ2
= 0 (9)

satisfies this criterion if µ > µ−(�), which is then given by

µ2− =
1

27r2H

(
−L1+

√
L21+27L2

)
, (10)

with

L1 = 2�
3(�+1)3+3�2(�+1)2−3�(�+1)−2 , (11)

L2 = �
2(�+1)2 [�(�+1)+1]

2
. (12)
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In the monopolar case, it becomes µ− =
2√
27
r−1H . Table 1

provides the values of the critical masses in units of r−1H .
The potential is always zero at r= rH and tends to µ for

r→∞.

(i) If µ< µ−(�), the potential reaches a maximum higher
than µ and then reaches a minimum; if

(ii) µ = µ−(�), the maximum is exactly equal to µ and
a minimum also appears; if

(iii) µ−(�)< µ < µ+(�) the potential reaches a maximum
lower than µ and still admits a minimum, whereas if

(iv) µ≥ µ+(�) the potential is a monotonically increasing
function of r.

This behavior is illustrated for � = 0 on Fig. 2 for masses
corresponding to those four specific cases. As a direct
consequence of the wave description of particles in quan-
tum mechanics, it can be seen that bound states – due
to the local minimum – can appear at the monopolar
order, with no classical equivalent . Although particles can
of course be classically trapped around a black hole, no
state without angular momentum can be found if the quan-
tum behavior is not taken into account. Just as in classi-
cal mechanics, it is the non-vanishing mass that leads to
the trapping (even at the quantum level), but with spe-
cific quantum features, lying in the quantization of the
angular momentum, and furthermore allowing for trap-
ping even without any angular momentum. Furthermore,
whatever the mass of the particle, a bound state will
appear for high enough multipolar orders so that µ <
µ+(�). This makes this phenomenon of “particle trapping”
quite generic. Those bound states are described by quasi-
stationary quantum states that cannot reach spatial in-
finity but can still make a transition to the black hole by
tunneling back through the gravitational barrier.
As the qualitative features can easily be understood at

the monopolar order, this particular value of the quantum
angular momentum is now assumed. When µ < µ+, the

Fig. 2. Squared monopolar potential for five particle masses:
(i) µ2 = 0.1r−2H corresponding to µ < µ−(0), (ii) µ = µ−(0),

(iii) µ2 = 0.2r−2H corresponding to µ−(0)< µ< µ+(0), (iv) µ=

µ+(0) and (v) µ
2 = 0.4r−2H corresponding to µ > µ+(0)

Table 1. Critical masses in units of r−1H for different angular
quantum numbers

� µ−

[
r−1H

]
µ+

[
r−1H

]

0 2√
27

1
2

1 0.794 0.931
2 1.275 1.480
3 1.768 2.046
4 2.264 2.617
5 2.761 3.191

positions of the potential barrier (r−) and of the local min-
imum (r+) can be analytically determined to be

r± =
1

µ

[
cos (θ)±

√
3 sin (θ)

]
, (13)

with

θ =
1

3
arctan

⎡

⎣

√(
µ+

µ

)2
−1

⎤

⎦ . (14)

The asymptotic behavior is in agreement with the mono-
polar potential for a massless particle:

lim
µ→0
r+ =+∞ , lim

µ→0
r− =

4

3
rH , lim

µ→µ+
r± = 2rH .

(15)

The latter case, µ→ µ+, corresponds to a saddle point at
r = 2rH , which represents the degeneracy of the maximum
and minimum of the potential. The most important prop-
erties of the monopolar potential are summarized in the
various graphs of Fig. 3. As long as the particle’s mass is
smaller than µ+, the potential displays a local well and this
feature may lead to the existence of quasi-stationary states
localized in the well.

2.2 Complex frequency spectrum: a WKB analysis

Even when there is a well in the potential, this does not
guarantee orbiting bound states to exist. To ensure the sta-
bility of those states, the local well has to be deep enough,
because of the zero-point energy associated with quantum
systems. Under the reasonable assumption that the shape
of the potential is well approximated by a second order ex-
pression, the dynamics is similar to an harmonic oscillator
with a frequency ω̃ given by the curvature of the potential
around its minimum:

ω̃ =
√
d2V 2/dr�2|r+ .

This curvature must be evaluated as a function of the
tortoise coordinate, because this is the coordinate system
in which the radial part of the Klein–Gordon equation is
of the Schrödinger type. The zero-point energy is simply
given by ω̃0 =

ω̃
2 . The ratios of this approximated compu-

tation to the mass of the particle and to the maximum of
the potential are plotted on Fig. 4. Each time a minimum
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Fig. 3. Upper left: position of the local minimum of the potential Vmin, in units of rH , as a function of the mass of the particle.
Upper right: ratio of the local minimum over the mass of the particle, Vmin/µ, as a function of the mass of the particle. Lower left:
position of the local maximum of the potential Vmax, in units of rH , as a function of the mass of the particle. Upper right: ratio of
the local minimum over the local maximum, Vmin/Vmax, as a function of the mass of the particle

does appear, the zero-point energy remains smaller than
the mass and the gravitational potential barrier, allowing
bound states to exist.
Because the left part of the potential well is not an in-

finite barrier, the orbiting bound states are describes by
quasi-stationary states associated with resonances in the
density of states. Those resonances are characterized by
their complex frequencies, the real part corresponding to
the energy position and the imaginary part to the band-
width. The spectrum of complex frequencies can be deter-
mined at the WKB order using the techniques developed
in [9]. The spectrum will be infinite if µ < µ− and finite if
µ− < µ < µ+. The Bohr–Sommerfeld rule, whose validity
in a relativistic framework was established in [9], reads (for
∀ n ∈ N)

∫ r2(ω)

r1(ω)

√
ω2−V 2(r)

dr

h(r)
=

(
n+
1

2

)
π ,

the highest frequency allowed for a bound state being µ for
µ < µ− and V (r−) for µ > µ−. In the latter case, the left-
hand side integral is clearly finished and there exist nmax

states. If µ < µ−, the upper bound of the integral is infinite
when ω = µ and, the function to be integrated being pro-
portional to r−1/2 near +∞, the spectrum is expected to
be infinite. With the appropriate change of variables in the
cubic equation giving the turning points, it can be shown
that the normal frequency spectrum of the resonances de-
pends only on µrH and can be written as

{ωn}n∈N =

{
fn(µrH)

rH

}

n∈N

.

Table 2 gives some normal frequencies and the associated
bandwidths, as numerically obtained at the semi-classical
order, following [10] to evaluate the tunnel probability. The
quantity Neq in this table will be explained in the next
section.

2.3 Qualitative features of the bound states
and comparison with quasi-normal modes

Before investigating the consequences of bound states
for Hawking radiation, some qualitative features of those
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Fig. 4. Ratio of the zero-point energy ω̃0 and the mass µ and
ratio of ω̃0 and the maximum of the potential Vmax, both as
a function of the mass of the particle in units of r−1H

states, related to QNMs, and the existence of a halo of
trapped particles around black holes, are briefly discussed
in this section.
As underlined in [4], the computations of bound states

and QNMs are very similar. The latter are given by the
pure outgoing boundary conditions [6], while the former
require evanescent waves at spatial infinity and ingoing
modes at the black hole event horizon. However, there
are no other fundamental physical links between QNMs
and bound states. First of all, quasi-normal modes are
related with the energy carried out by perturbations of

Table 2. First and second rows below the integer n: spectrum of normal frequencies
ω and bandwidths Γ evaluated at the WKB order in units of r−1H . Third row: number
of trapped particles Neq in the different energy levels once the equilibrium regime is
reached (see the text). Three different masses are considered: µ < µ−, µ= µ− and µ >
µ−

µ= 0.25×µ+
n 0 1 2 3 4

ωrH 1.24×10−1 1.25×10−1 1.25×10−1 1.25×10−1 1.25×10−1

ΓrH 1.49×10−2 1.49×10−2 1.50×10−2 1.50×10−2 1.50×10−2

Neqr
−1
H 2.15 2.09 2.09 2.09 2.09

µ= µ−
n 0 1 2 3 4

ωrH 3.75×10−1 3.83×10−1 3.84×10−1 3.84×10−1 3.85×10−1

ΓrH 1.68×10−1 1.87×10−1 1.90×10−1 1.91×10−1 1.92×10−1

Neqr
−1
H 0.024 0.021 0.021 0.021 0.020

µ= 0.8×µ+
n 0 1 2 3 4

ωrH 3.88×10−1 – – – –
ΓrH 1.91×10−1 – – – –

Neqr
−1
H 0.019 – – – –

black holes, whereas bound states correspond to quantum
states that cannot escape from the gravitational attrac-
tion. In addition [6], the mass µ of the field has to be
smaller than µ−(�) for QNMs to exist at the �th multipolar
order. Moreover, because quasi-normal modes correspond
to resonances near the peak of the potential, their ener-
gies have to be greater than the mass of the field. Those
characteristics are direct consequences of the pure outgo-
ing boundary conditions. The situation is fundamentally
different for orbiting bound states. The condition on µ is
less restrictive: µ has to be smaller than µ+(�) > µ−(�)
for orbiting bound states to exist at the �th multipolar
order. Furthermore, the energy of those states is lower than
the mass of the particle, due to the gravitational binding
energy.
In addition, as long as µ< µ+(0), bound states exist for

�= 0 and a spherical halo of quanta “orbiting” the black
hole can be expected. If the mass is between
µ+(�− 1) and µ+(�), bound states will exhibit an angu-
lar distribution dominated by the lowest multipolar order
allowing for a minimum in the potential, that is with a dis-
tribution roughly given by Y �m(θ, ϕ). Clearly, the mass of
the field has to be close to the critical masses µ± for the
orbiting bound states to have a substantial influence. In
particular, if µ� µ+(0), the local well is so tiny at any mul-
tipolar order that particles can be treated as massless. So
as to fix the orders of magnitude, Table 3 gives the masses
and temperatures black holes should have so that the ef-
fects studied in this article become important for some
standard model particles. Although they are not spinless
– therefore requiring one to investigate the master equa-
tion for fermions and gauge bosons – the main qualitative
features can safely be inferred from the scalar case.
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Table 3. Masses and temperatures expected for a black hole to have the critical
masses µ± close to the masses of some standard model particles

particle µ= µ− for �= 0 µ= µ+ for �= 0
(mass) MBH [kg] TH [MeV] MBH [kg] TH [MeV]

electron 9×1013 0.1 1.2×1014 0.08
(511 keV)
muon 5×1011 21.7 6×1011 16.7
(105MeV)
charm 4×1010 248 5×1010 190
(� 1.3 GeV)
top 2.5×108 36×103 3.7×108 28×103

(171 GeV)
W boson 6×108 16×103 8×108 12×103

(80 GeV)

Most very massive particles (like the top quark or W
boson) are unstable and will decay before reaching infinity
or creating a substantial halo around the hole. This point
should, however, not prevent us from considering bound
states associated with lighter stable particles, as the rele-
vant parameter for the bound states to exist is not the mass
of the field in itself, but the hierarchy between this mass
and the mass of the hole. As far as the field is not strictly
massless, there will be a black hole masse range where µ
becomes close to µ+ and µ−, making the trapping effective.
An important issue to address is related to the time

stability of those bound states. By integrating the Hawk-
ing instantaneous energy spectrum and summing over all
the degrees of freedom of the standard model of particle
physics, it is easy to show that the mean time between the
emission of two quanta is, in Planck units, ∆t≈ 100M . If
we consider, e.g., electrons emitted by a black hole such
that µ≈ µ−, this leads to ∆t≈ 10−20 s; this remains tiny
when compared to the time-scale of the black hole evolu-
tion. In other words, as the energy carried out from the
hole by each emitted particle (E ≈ T = 1/(8πM)) is much
smaller than the mass of the hole, many quanta can be
emitted and trapped before the structure of the poten-
tial will have substantially changed. This is, of course, not
true anymore when T ∼M , that is to say in the Planck
regime in which the semi-classical approximation breaks
down anyway.

3 Consequences for the Hawking radiation

3.1 Trapped particles

The existence of bound states will play an important role
in the Hawking evaporation mechanism which was ini-
tially described in [7] without taking into account this
phenomenon.
First, some low-energy particles will be trapped by the

potential well. They will not reach infinity and the spec-
trum will be modified in a way quite similar to what could
happen due to a QCD halo [8]. When the black hole evapo-
rates, new bound states will appear each time the tempera-
ture becomes of the same order than the critical masses

µ± associated with existing particles. At the first level of
approximation, the number of particles within the well
per unit of time and energy, dN/dt, at a given energy is
given by Fin−Fout with Fin = ω/[τ(eω/T ±1)] represent-
ing the ingoing one due to the Hawking evaporation, and
Fout =N/τ the outgoing one. The energy-dependent time
constant τ = 1/Γ simply corresponds to the lifetime of the
bound state. This simple model for the number of par-
ticles trapped in a local well is realistic only in the case of
heavy black holes which can be considered as stationary
(the small amount of energy carried out by emitted par-
ticles being much smaller that the mass of the black hole).
With N0 the initial amount of trapped particles, the time
evolution is simply given by

N(ω, t) =N0(ω)e
−t/τ +

1

ω
(
e−ω/TH −1

)
(
1− e−t/τ

)
,

(16)

which can be clearly understood as competition between
particles “leaking” from the well to the hole and par-
ticles “filling” the well because of the Hawking radiation.
Quickly the number of trapped particles reaches an equilib-
rium regime with

Neq 

1

ω
(
e−ω/TH −1

) .

It is worth noticing that once the equilibrium regime is
reached, the number of trapped particles does not depend
on τ but only on the energy and on the temperature of the
black hole. This behavior is due to the fact that the proba-
bility to cross the potential barrier is the same for incoming
and outgoing particles. As a consequence, the equilibrium
regime, given by the ratio of the number of particles scat-
tering off the barrier from the left and the number of par-
ticles scattering off the barrier from the right, does not
depend on the lifetime of the bound states.
It is important to compare the characteristic time to

reach this regime with the characteristic evolution time
of the black hole. For monopolar bound states, which are
dominant, and for particles with masses below µ−, the life-
time ranges between 10M and 100M . This time-scale is
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of the same order as the typical time-scale between two
successive emissions of a particle, which, as already men-
tioned in this article, is much smaller than the evolution
time-scale for the black hole itself. This makes meaning-
ful our hypothesis of non-evolutionary black holes: as long
as heavy black holes are considered, enough particles are
emitted to reach the equilibrium regime without any sub-
stantial modifications of the properties of the black hole.
The expected number of trapped particles when the equi-
librium regime is reached is also given in Table 2 in units of
r−1H , per unit of energy and time. As can be seen from this

Fig. 5. Absorption cross section for massive scalar particles in
units of πr2H as a function of the energy measured at infinity

Fig. 6. Flux at infinity emitted by a black hole when taking into account the mass of the emitted particle. The different curves
share the convention of Fig. 5: µ = 0 [r−1H ],

√
0.1 [r−1H ], µ−,

√
0.2 [r−1H ], µ+,

√
0.4 [r−1H ] from top to bottom. Left panel : Hawk-

ing’s radiation spectrum, d2N/dtdk, as a function of the particle’s momentum k. Right panel : Hawking’s radiation spectrum,
d2N/dtdω, as a function of the energy ω of the particle

table, the mean number of particles decreases as the mass
of the particle increases, since higher energy bound states
are involved.

3.2 Greybody factors and radiation spectra

The mass of the particle will also drastically modify
the greybody factors that account for the non-trivial
part (gravitational barrier and centrifugal potential) of
the couplings between quantum fields and evaporating
black holes. The greybody factors (whose detailed study
began with [11, 12] followed by [13–15]) have recently
been computed in quite a lot of interesting situations:
extra dimensions [16], de Sitter spacetime [17], rotat-
ing black holes [18, 19], Gauss–Bonnet gravity [20, 21]
etc., but up to now the masses of the emitted particles
have mostly been ignored (although some good estimates
were obtained in [15, 22]). Figure 5 displays the absorp-
tion cross section numerically computed by solving the
Klein–Gordon equation to evaluate the ingoing and out-
going amplitudes of the wave function at the horizon
and at spatial infinity (see, e.g., [17] for a detailed de-
scription of the method we have developed). It should
be pointed out that those cross sections have been com-
puted for particles with an energy greater than or equal
to the mass. Particles with an energy smaller than the
mass will face an infinitely thick potential barrier, pre-
cisely due to the mass term in the potential, and will never
reach spatial infinity. It should also be noticed that, when
the wavelength of the particle becomes infinite, the cross
section diverges, potentially leading to an experimentally
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relevant enhancement of soft quanta. It can indeed be
expressed as

σg(ω) =
∑

�

π(2�+1)

k2
|A�|

2
,

where k is the momentum (so that ω2 = k2+µ2 at spatial
infinity) and |A�|

2
is the transmission coefficient. However,

the transmission coefficient remains always smaller than or
equal to unity and the divergence lies in geometrical issues.
When ω→ µ, the wave number of the particle tends to
zero, whereas the transmission coefficient is non-vanishing,
just because the potential barrier is not infinitely thick
(the barrier precisely stops where the potential well starts
and the potential tends asymptotically to µ with nega-
tive values). This leads to a k−2 divergence. The situation
is clearly different for massless particles. In this case, the
potential barrier tends asymptotically to zero with posi-
tive values, leading to |A�|

2 ∝ k2 when ω→ 0. This feature
prevents the IR divergence from occurring for massless par-
ticles. Those results are in agreement with analytical inves-
tigations in the IR regime, σg(k→ 0)∼ 4π2(µrH)3/k2, as
obtained following [22].
In Fig. 6, the flux at infinity emitted by a black hole is

plotted when the masses of the emitted quanta are taken
into account. As can be seen, this substantially modifies
the usual picture both because of the intrinsic cutoff im-
posed by the mass and because of more subtle effects in-
cluded in this analysis, like the selection induced on the al-
lowed quantum multipolar orders of the outgoing particle.
From Fig. 6, it can be seen that the radiation flux decreases
for higher masses. However, in the IR limit, this tendency
should change, as can be seen using the analytical limit

d2N

dtdk
(k→ 0)∼

4π2(µrH)
3

eµ/T −1
(17)

obtained from [22]. The flux is non-vanishing only if the
mass of the particle is non-vanishing, enhancing the emis-
sion of ultra-soft quanta, just as for Schwarzschild–de Sit-
ter black holes [17].

4 Conclusion

This study establishes the existence of new bound states
around black holes, which, at least at the dominant mono-
polar order, have no classical equivalent. Although such

states are known to exist in other physical systems, this
opens new perspectives to investigate the detailed features
of the Hawking spectrum (with possible cosmological con-
sequences related, e.g., to the primordial power spectrum
– see [23] for recent limits and [24] for a review), the in-
tricate shape of the greybody factors and the propagation
of massive quantum fields in the vicinity of a black hole.
Not only could the phenomenology be revised as the spec-
tra should be quantitatively modified but fruitful thought
experiments associated with light black holes should also
take into account those states. The intricate problem of

backreaction should however be addressed and requires an
exhaustive study in itself.
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